友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
亚里士多德的三段论-第18部分
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!
' '因为对于所有的替换而言最后得出的都是1,所以易位律是我们系统的断定命题。
让我们举出表达式CKpNqq作为第二类的例子。
只要试一试一个替换就够了:
p1,q0:CK1N0=CK10=C10=0。
'这个替换最后得出了0,所以表达式CKpNqq是假的。
在亚里士多德三段论系统中作为辅助前提使用的所有演绎理论的断定命题,我们都可以用同样的方法加以检查。
…… 132
021第四章 用符号形式表达的亚里士多德系统
24。量词A亚里士多德没有量词的明确观念并且没有在他的著作中使用它们;因而我们不能把它们引入他的三段论系统。
但如我们所已经看到的,在他的系统中有两点,如果我们应用量词来解释的话,我们就能较好地理解它们。
全称量词与所谓“三段论的必然性”相联系,存在量词或特称量词与显示法证明相联系。
现在,我将把在第19节述说的、用存在量词来作的证明以及在第5节提到的依赖全称量词的论证翻译为符号。
我用大写的希腊字母表示量词,用Ⅱ表示全称量词,而用后表示特称或存在量词。
Ⅱ可以读作“对于所有而言”
,^而可以读作“对于有些而言”或“有”
;例如cKAcbAca^的意思用语言说出来就是:“有一个c使得所有c是b并且所有c是a”
,或者更简短地说:“对于有些c而言,所有c是b并且所有c是a”。
每一个带量词的表达式,例如cKAcbAca,^包含三个部分:第一部分,在我们的例子中就是,总是一个^量词;第二部分,在这里就是c,总是一个用前面的量词约束着的变项;第三部分,在这里就是KAcbAca,总是一个命题表达式,它包含着恰好被量词当作自由变项约束起来了的变项。
由于把c放在KAcbAca之前,最后这个公式中的自由^变项c就变成被约束的了。
我们可以简单地说:(第一部^分)约束c(第二部分)于KAcbAca(第三部分)之中。
存在量词的规则已经在第19节中陈述过了。
在各导出行中,我用1表示允许我们把置于一个真蕴涵式的前件之前^ X的规则,并且2表示允许我们把置于一个真蕴涵式的后件^ X
…… 133
24。量 词A 121
之前的规则。
以下的推导将是易于了解的。
因为它们都是第19节中用文字作出的推导的翻译,相应的断定命题带有相同的番号(runing
number)
,并且用相应的小写字母作为变项以代替大写字母。
I前提换位的证明:设定为真而不用证明的断定命题:(1)CIabcKAcbAca^(2)CcKAcbAcaIab。
^断定命题(1)和(2)能用作Ⅰ前提的定义。
(3)CKpqKqp(合取的交换律)
(3)pAcb,qAca×(4)
'(4)CKAcbAcaKAcaAcb(4)2c×(5)
^(5)CKAcbAcacKAcaAcb^(5)1c×(6)
^(6)CcKAcbAcacKAcaAcb^T1。
CpqCqrCpr(假言三段论定律)
T1。
pIab,qcKAcbAca,rcKAcaAcb×C' ^ ^(1)—C(6)—(7)
:(7)CIabcKAcaAcb^(2)ba,ab×(8)
'(8)CcKAcaAcbIba^T1。
pIab,qcKAcaAcb,rIba×C(7)—C' ^(8)—(9)
…… 134
21第四章 用符号形式表达的亚里士多德系统
(9)CIabIba这些推导行表明,(4)与(8)仅用替换而从其它断定命题得到,而(7)与(9)乃用替换与两次分离而得到。
读者可按这种方式自己试作Darapti式的证明,它是容易的。
Bocardo式的证明(第19节所用的变项P、R和S必须改换字母,因为相应的小写字母p,r和s是用以表示命题变项的,把p改写为d,R改为a,S改为b)
不加证明而设定的断定命题:(15)CObdcKAcbEcd^两个三段论取作前提:(16)CKAcbAbaAca(Barbara)
(17)CKAcaEcdOad(Felapton)
T6。
CKpqrCKrstCKpqst这就是人们认为由亚里士多德发现的“综合定理”。
T6。
pAcb,qAba,rAca,sEcd,tOad×C'(16)—C(17)—(18)
(18)CKAcbAbaEcdOadT7。
CKpqrsCKprCqs(辅助断定命题)
T7。
pAcd,qAba,rEcd,sOad×C(18)—'(19)
(19)CKAcbEcdCAbaOad(19)1c×(20)
^(20)CcKAcbEcdCAbaOad^
…… 135
24。量 词A 321
T1。
CpqCqrCprT1。
pObd,qcKAcbEcd,rCAbaOad×C' ^(15)—C(20)—(21)
(21)CObdCAbaOad这就是Bocardo式的蕴涵形式。
如果我们希望有这个式的通常的合取形式,我们必须应用所谓输入律(law
of
imporCtation)
:T8。
CpCqrCKpqr于(21)
,我们得到:
T8。
pObd,qAba,rOad×C(21)—(2)
'(2)CKObdAbaOad(Bocardo)。
用所谓输出律(law
of
exportation)
T9。
CKpqrCpCqr。
(它是输入律的转换)
,我们可以从Bocardo式的合取形式倒退回去得到它的蕴涵形式。
全称量词的规则与第19节陈述的特称量词的规则是相似的。
全称量词能够无条件地放在真蕴涵式的前件的前面,以约束出现于前件中的自由变项。
只有满足这样的条件,即在后件中被约束的变项不在前件中作为自由变项出现时,才可以在真蕴涵式的后件之前加上全称量词。
我用1,表示这个规则_的头一条,用2表示第二条。
_从以上全称量词的原始规则,得到两条导出规则:第一,(从规则2及简化定律)
一个真表达式,在约束出现于其中的_自由变项时,允许把全称量词置于它的前面;第二,(从规则1及命题的同一律)
,允许消掉位于真表达式之前的全称X
…… 136
421第四章 用符号形式表达的亚里士多德系统
量词。
这些规则怎样可以导出,我将用Ⅰ前提的换位律为例来加以说明。
从换位律:(9)CIabIba就得到量化了的表达式(26)abCIabIba‘而从量化了的表达式(26)又得到非量化的换位律(9)。
首先,从(9)到(26)
T10。
CpCqp(简化定律)
T10。
pCIabIba×C(9)—(23)
'(23)CqCIabIba应用规则2于这个断定命题以约束b并随后约束a,因为b_与a都不在前件中出现:(23)2b×(24)
‘(24)CqbCIabIba‘(24)2a×(25)
‘(25)CqabCIabIba‘(25)qCpCq×CT10-(26)
'(26)abCIabIba‘其次:从(26)到(9)。
T5Cpp(同一律)
T5。
pCIabIba×(27)
'(27)CCIabIbaCIabIba我们应用规则1于这个断定命题以约束b并随后约束a:_(27)1b×(28)
‘
…… 137
25。三段论系统的基本要素A 521
(28)CbCIabIbaCIabIba‘(28)1a×(29)
‘(29)CabCIabIbaCIabIba‘(29)×C(26)—(9)
(9)CIabIba亚里士多德断定:“如果有些a是b,那么,有些b应是a就是必然的”
,依我看,“就是必然的”这表达词只能有这个意思:要找到变项a和b的那样的值,它会确证前件而不能确证后件,那是不可能的。
换句话说,那就是指“对于所有a与所有b而言,如果有些a是b,则有些b是a。”这就是我们的量化的断定命题(26)。
这个断定命题与非量化的换位律“如果有些a是b,则有些b是a”
(它不包含必然性的记号)
是等值的,这是已经证明了的。
由于三段论的必然性是与全称量词等价的,所以它可以被省略,因为一个全称量词在真公式之前是可以省略的。
25。三段论系统的基本要素A每一个公理化的演绎系统都以三项基本要素为基础:原始词项,公理,和推论规则。
我从对断定的表达式而言的基本要素开始,对排斥的表达式而言的基本要素将于以后给出。
我取常项A和I为原始词项,用它们来定义其它两个常项E和O:
Df1
Eab=NIab
f2
Oab=NAab。
为了把证明缩短我将使用下面的两条推论规则来代替上述定
…… 138
621第四章 用符号形式表达的亚里士多德系统
义:规则RE:NI在任何地方均可用E去替换,反之亦然。
规则RO:NA在任何地方均可用O去替换,反之亦然。
当作公理来断定的这个系统的四条断定命题就是两条同一律和Barbara式及Datisi式:1。
Aa2。
Ia3。
CKAbcAabAac(Barbara)
4。
CKAbcIbaIac(Datisi)。
除了规则RE与RO之外,我采用以下两条对于断定的表达式的推论规则:(a)代入规则:如果a是这一系统的一个断定的表达式,那么,用正确的代入从α得出的任何表达式也是一个断定的表达式。
唯一正确的代入是对词项变项a,b,c,代以其它的词项变项,如以b代a。
(b)分离规则:如果Cαβ与α都是这系统的断定的表达式,那么β也是断定的表达式。
我采取带有被定义的函子K的演绎理论的C—N系统,作为辅助理论。
命题变项可以代之以三段论的命题表达式,如Aab,Iac,KEbcAab,等等。
在所有以后的证明中(并且也对排斥的表达式)我将只用下面十四条用罗马数字指明的断定命题:Ⅰ。
CpCqp(简化定律)
Ⅱ。
CqrCpqCpr(假言三段论定律、第二个形式)
Ⅲ。
CpCqrCqCpr(分配律)
…… 139
25。三段论系统的基本要素A 721
Ⅳ。
CpCNpq(邓斯司各脱定律)
WⅤ。
CNpp(克拉维乌斯定律)
Ⅵ。
CpqCNqNp(易位律)
Ⅶ。
CKpqrCpCqr(输出律)。电子书
Ⅷ。
CpCKpqrCqrⅨ。
CspCKpqrCKsqrⅩ。
CKpqrCsqCKpsrⅪ。
CrsCKpqrCKqpsXI。
CKpqrCKpNrNqXI。
CKpqrCKNrqNpXIV。
CKpNqNrCKprq断定命题Ⅷ是输出律的一个形式,断定命题Ⅸ—Ⅺ都是复合的假言三段论定律,而Ⅻ—是复杂的易位律。
所有这些,用第23节所说的0—1方法,都是易于验证的。
断定命题Ⅳ、Ⅴ与Ⅱ、Ⅲ一起给出全部C—N系统,但Ⅳ、Ⅴ只是对排斥的表达式的证明才是需要的。
公理1—4的系统是一致的,也就是说是无矛盾的。
无矛盾性的最容易的证明是把词项变项当作命题变项,以及把函项A和I定义为常真(即令Aab=Iab=KCaCb)
而作出的。
于是公理1—4作为演绎理论的断定命题都是真的,而且已知这演绎理论是无矛盾的,所以三段论系统也是无矛盾的。
我们系统的所有公理都是彼此独立的。
这一点的证明可以用演绎理论范围内的解释来作出。
在后面的解释中,词项变项作为命题变项处理。
公理1的独立性:取K代替A,取C代替I,公理1就不
…… 140
821第四章 用符号形式表达的亚里士多德系统
能确证了,因为Aa=Ka,而Kaa在a0时,得出0。
如同用'0—1方法所能看出的那样,其它公理均可确证。
公理2的独立性:取C代替A,与K代替I,公理2就不能确证了,因为Ia=Ka。
其它公理均可确证。
公理4的独立性:取C代替A与I,公理4就不能确证了,因为CKAbcIbaIac=CKCbcCbaCac在b0,a1,c0时,它' ' '得出0其它均可确证。
公理3的独立性:在只有0与1二值的演绎理论的基础上证明这条公理的独立性是不可能的。
我们必须引入第三个真值,令其为2,它可看作是代表真,亦即1的另一个符号。
对于第23节所作出的C,N和K的诸等值式,我们还要加上下面这些公式:C02=C12=C21=C2=1。
C20=0,N2=0,K02=K20=0,K12=K21=K2=1。
在这些条件下,所有C—N系统的断定命题都可确证,这能很容易地表明。
让我们现在把Iab定义为常真的函项,亦即对于a与b的所有的值而言,Iab=1,而把Aab定义为具有以下诸值的函项:Aa=1,A01=A12=1,以及A02=0(其余均无关)。
公理1,2与4都可确证,但从公理3用代入b1,c2,a0我们得'到:CKA12A01A02=CK10=
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!