友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
第三电子书 返回本书目录 加入书签 我的书架 我的书签 TXT全本下载 『收藏到我的浏览器』

人类的知识-第66部分

快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!

反映出来的结构就光的情况来说比就声音的情况来说要复杂得多。

把我们自己限制在唯我主义假设的圈子里,并且在我们刚刚看过的所有
这类情况中否认一切不是我们自己经验过的东西,这一点我们必须承认在逻
辑上是可能的;但是如果我们这样做,许多被实在论假设用简单定律说明的
现象就变成不规则的和不相连续的了。

所以我认为在寻找经验界的定律上我们可以应用下面的原理:

1。如果许多结构相似的事件存在于彼此相离不远的一些领域,并且围绕
一个中心排列,那么就有相当大的概然性认为这些事件前面有一个具有相同
结构的复合,并且事件发生的时间与某一时间的差别和它们与这个中心结构
的距离成正比。
2。每逢我们发现一个结构相似的系统与一个中心在下面这种意义上联系
着:也就是说每个事件出现的时间与某一时间的差别和这个事件与这个中心
的距离成正比时,那么就有相当大的概然性认为所有这些事件与位于中心一

个事件由一些时空上彼此相邻的中间环节联系着。

3。当我们发现许多结构相似的系统,例如这种或那种元素,分布情况看
来漫无规律,不具有一个与之相关的中心时,我们就会做出这样的推论:大
概有着使得这类结构比其它在逻辑上可能但却很少或者根本不曾发生的结构
更为稳定的自然律。
以上原理中前面两个不仅适用于球状传播系统,例如光波和472 声波,
而且适用于直线传播系统,例如电线的导电。因果线可能能是时空中任何一
条连续曲线。举例来说,写着发报人与收报人住址的电报所走的路线就是这
样。但是在所有情况下我们的第二个原理都假定连续性。

以上三个原理如果被人接受,我认为将为物理学以观察为基础作出的大
多数推论提供一个充分的先验的根据。我确信三个原理都能加以简化,或者
也许可以表现为一个原理的推论。同时我还把它们作为对于科学推论中必须
首先假定的东西进行分析的一个步骤提出来。

我们刚刚谈到的因果系列中的结构不变原理虽然在某些领域内具有很大
的重要性,在其它一些领域内却根本不能适用。让我们详细地谈一下它在什
么场合适用和在什么场合不适用。

我们已经看到通过知觉得到的知识只有在存在着从物体通向我们自己并
且大体上各自独立的因果连锁的情况下才可能得到。我们见到不同的星体,
因为从每个星体发出的光所走的路线都不受邻域中发生的其它事件的影响。
我们见到周围的物体,也是由于同样的原因。但是一个因果连锁的独立从来
也不是完全的。从一个星体发出的光受到引力而产生偏向,遇到云雾会变得
完全看不清楚。地面上的物体按照距离、视力强弱的不同而呈现或多或少的
模糊程度,有时这类结果并不改变结构,而只是减少保存下来的数量。你在
晴天看见远方一座山,你可以准确地看清山的结构,但是你看见的东西比你
走近时看见的要少。当东西从一面好的镜子里反映出来时,也许除了漏掉某
种细节之外,并没有结构上的改变。但光从三棱镜通过被分为光谱上各种颜
色时就有结构上的改变,一滴墨水落进一杯水中也发生这种改变。

有时结构的改变比上面所说的情况全面得多。烈性炸药爆炸时,除了原
子以外,所有的结构都改变了;原子弹爆炸时,连原子也发生改变。动植物
生长时,在很大程度上结构保持不变,但在授精时却发生一种从结构上讲类
似化合的变化。我们的结构不变原理不适用于这类变化。

自然过程分为两类。一方面是那些以某种形式的常存为特征的过程;另
一方面有综合或分解的过程。说明常存的实例有“东西”、光线和声波。说
明综合的实例有人们认为由氢构成的较重的元素,化合和授精。说明分解的
实例有放射性、化学分析和动物死后的腐化。在综合与分解中结构发生改变;
在常存中结构在某种程度上保持不变。

本章所谈的这个原理只与常存有关。它所要做的是指出常存乃是自然过
程中一个非常普遍的特点,结构是最容易常存的,并且如果它常存下去,那
么它会填满时空的某一连续领域,这个领域通常有一个在时间上早于该领域
其它部分的起源。

结构不变原理与第一运动律有某种类似的地方。第一运动律说出一块物
质在不受环境影响时的行为;结构不变原理在一种过程不受环境影响时总是
适用的,但也适用于各种其它情况。比方说,它适用于介乎正在广播他的讲
话的人的口腔运动和他的听众的听觉之间所有各阶段。它适用于回声和镜子

的反照。它适用于从作者的思想到印成书籍中间经过的每一步。在所有这些
情况下,尽管环境对于过程产生各种不同的影响,这些影响的性质从广义上
来说并不改变结构。

从认识论的观点看,我们的原理的最重要的应用在于知觉与物体的关系
上。我们的原理蕴含着这个道理:在经常但不是永远474 出现的外界条件下,
一个知觉的结构与一系列回溯到一个原始事件的若干事件的结构是相同的,
在这个原始事件之前不存在具有所说的这种结构并在时空方面联系着的事
件。这个原始的事件就是所谓被我们“知觉”到的东西,如果人们认为不同
的人可以“知觉”到相同物体的话。

我们的感觉经验与它们的物理原因之间在结构上的相同说明了为什么素
朴的实在论,尽管不是真理,在实际应用上产生的混乱却非常之少。已知同
一结构的两个实例,那么关于每个对于其中一个为真的陈述都对应着一个对
于其中另一个为真的陈述;对于其中一个的陈述通过代换相应的项与相应的
关系就转变为对于其中另一个的陈述。举语言与文字为例,并且为了简便起
见让我们假定有一套完备的语音字母。那么关于每一个字母的形体都对应着
某一种声音,关于从左到右的关系对应着从前到后的关系。由于这种对应关
系,我们才能谈到一篇讲话的“精确的”文字记录,尽管两者之间性质上完
全不同。同样,在适当的外界条件下,知觉可以给我们提供一个物理事件的
“精确的”表象,尽管在事件与知觉结果之间可能存在着和语言与文字之间
同样大的区别。

如果已知关于两个相同结构的实例的两个互相对应的陈述,那么它们可
以通过一部包含在这两个实例上互相对应的那些字词的字典使之发生关系。
但是还有另外一种方法,虽然这种方法没有上面那种方法完善,人们还是时
常使用,这就是在对一个实例做出陈述时使用对另一个实例做出陈述时完全
相同的文字。关于语言与文字我们习惯上是这样做的。“字”这个词就同样
适用于说的字和写的字。象“句子”、“陈述”、“问题”等词也是这样。
这种安排使得我们的全部字词都变得意义含混,但在结构相同的两个实例之
间的差别无关紧要和我们想说出同时有关两者的话时,这种安排却是方便
的;例如,“谈论是由句子组成的,句子是由字词组成的”——这里所用的
“谈论”就是一个既适用于语言又适用于文字475 的词。同样,一个作者可
以在一本印成的书里说到“上面的陈述”或“前面的陈述”,尽管严格来说
“上面”只能适用于文字而“前面”只能适用于语言。

这种形式的意义含混发生在人们使用素朴的实在论的语言的时候,尽管
人们认为这种看法在哲学上没有什么根据。就物体具有与知觉相同的结构而
论,某种一定的文字形式可以被解释(按照第四部分第一章所说的意思)为
适用于物体或知觉,对于两者同时为真或者同时为伪。关于一个知觉结果我
们可以说这是蓝的;关于一种光线,我们也可以这样说。“蓝”这个词用在
一种光线上与用在一种知觉上有着不同的意义,但是在每一种情况下,意义
都是一个解释系统当中的部分,只要我们固守一种系统,我们的叙述为真或
为伪在一定限度内并不依靠所选择的系统。正是因为这个原理有它的一些局
限,所以哲学必须抛弃素朴的实在论。但是尽管有这些局限,这个原理应用
的范围却很广泛,由于这个理由素朴的实在论才具有那种看来使人相信的力
量。

第七章相互作用

在最近几章内我们主要谈论的问题是一种可以叫作“固有的”因果关系。
这是那种被解释为一件东西或一个过程的常存的因果关系。由于人们认为东
西的常存是理所当然的事情,并且认为常存包含实质上的相同,这种因果形
式并没有按照它的本来面目得到人们的认识。我们可以把它叙述如下:“已
知在某一时间地点发生的一个事件,那么在每一相邻的时间,在某一相邻的
地点通常有一个极其相似的事件发生”。这个原理为大量的归纳提供了一个
基础,但是初看并不能让我们处理那种一般叫作相互作用的关系,476 例如
台球的撞碰。我们在本章里所要研究的就是这种因果过程。

让我们看一下两个各沿直线走动后互撞的台球。每个台球在撞碰后仍然
继续存在,并被人们认为和以前是同一个球,因为它满足上面所说的固有因
果律。但是人们仿佛可以这样说:在不发生撞碰时比台球相遇时有着更高程
度的固有因果关系。在大多数时间,我们不仅可以说,已知台球在一瞬间的
位置,它在稍后一个瞬间将具有某个相邻的位置;我们还可以说,已知在两
个相邻瞬间的球的位置,它在第三个稍后的瞬间的位置大体将与以前两个位
置在一条直线上,它与以前每个位置的距离大体将与所隔的时间成正比。这
就是说,我们有一个不仅关于位置的而且关于速度的固有律。这是前两个运
动律的要旨。

如果我们假定在我们观察台球时,撞碰只占所涉及的全部时间的一小部
分,那么结果将是台球在大多数时间沿着直线运动。我们必须发现的是一个
确定球在撞碰后运动的新方向的定律。如果最小的可量角是一度的1/n 次,
那么球可能走的可以度量的不同方向的数目是360n。所以,取任何一个以实
际上可以达到的最大限度精确性来确定的方向,球将沿这个方向运动的先在
概率是1/360n。这是个有限数,尽管很小;所以从观察到的撞碰得出的归纳
可以使一个概括性命题具有概然性。这就是说,如果我们假定我们的固有因
果律,那么关于台球的数学理论的其它部分就可以靠归纳得到发展,而无
需另外任何先于经验的假定。

我们的固有因果律,在上面的分析过程中,扩大到既包括位置也包括速
度,这种情形并不是在所有时间,而是在大多数时间。这就等于假定发生相
互作用的时间是例外。可是这也许是一句言过其实的话。在所有时间都存在
着球台与台球之间的相互作用,这477 种相互作用使得台球不致落地。但是
因为这是一种不变的情况,所以我们可以不去管它,正如我们可以说出球的
运动定律而不提球台一样,尽管如果不是由于球台的话,这些定律将不能成
立。如果球与另一个球碰上,我们说出关于它的运动定律就不能不说到另一
个球,这另一个球从一种意义上讲比球台在因果关系上更为重要。我们上面
所假定的东西相当于这一点:在大多数时间支配一件“东西”的历史的近似
性定律无需谈到别的“东西”;必要做出这样叙述的时候是例外。但是人们
并不认为“固有的”定律超过第一次所得的近似结果。

“固有的”定律可以认为不仅适用于位置和速度,而且适用于其它事物。
一条火红的拨火棒从火里取出后,是逐渐而不是一下子失去火红色的。一次
铃声也是逐渐消失的,尽管很快。非常突然的事件,例如一次爆炸或闪电,
是例外的情况。既然是例外,它们就不能使那种认为在任何已知场合下,非
常突然的变化是不大可能发生的假定失效。另外,变化的方向的改变比起位

置或性质的改变特别容易带有(或多或少的)突然性;台球相撞就是这种情
形。

上面所提的一些看法可以很容易与原子论取得谐和一致的关系。看来原
子在大多数时间都处于稳定状态,也就是说它的历史由一个固有律支配着;
但是一个光子、中子或电子的接近可能引起一次多少有些突然的变化。我并
不想夸大这种谐和一致或过分估计它的重要性。我们的公设所处理的与其说
是科学的高级成果还不如说是科学的开始。举例来说,碰撞说是动力学中很
早一个部分,它使用一种比较原始的“物质”概念。我一直在提出的意见就
是科学必然从一些仅仅是第一次取得的近似结果的定律开始,并只能应用于
大多数情况,但是只要不把这些定律说得超过这一点,那么它们就完全为真。
我们最早就提出的公设必然带有这种近似和概然的性质。它们必然要这样
说:在已知的外界条件下,发生的事件可能大体上是这个样子。这就足够使
人产生一种有根据的预料,即一种具有相当高的固有可信度的预料。随着科
学的进步, 478 科学的定律获得更高程度的概然性以及精确性。一个野蛮
人可能说:“明天月亮大概会圆”。一个天文学家可能说:“在明天格林威
治时间6 时38 分至6 时39 分几乎可以肯定月亮会圆”。但是这种进步是程
度上的,而不是性质上的。那些最早就提出的带有概然性和近似性的假定从
始至终一直都是不可缺少的。

人们将看到我并没有引进一个大意是假定有自然律存在的公设。我所以
不这样做是因为在任何可以证实的形式下,这样一个公设将不是虚妄便是一
个重言式。但是让我们看一下这样一个公设可能是什么样子。

人们必须肯定的是:在任何可证实的形式下,如果已知一定数量的适当
的观察,那么存在着一个可以发现的公式,从这个公式可以做出关于某些其
它现象的推论。人们可以注意到有关的观察数量必然是有限的,并且每次观
察的精确程度都不能超过现有的测量技术所达到的水平。但是这里我们碰到
了一个困难,这个困难和我们在试图把归纳当作一条公设时所面临的那种困
难相类似。这个困难就是如果已知任何一个由观察组成的有限集合,那么永
远存在着无限数目的为全部观察所证实的公式。例如假定我们列出火星在星
期一,木星在星期二以及其它行星在一周内各天在天球上记录下的位置;稍
稍灵活运用一下富列尔级数,我们就能构成许多适合所有到现在为止出现的
那些位置的公式,但是大多数公式在将来会变得失效。所以认为存在着适合
任何由数量观察组成的从因果关系上选择出来的集合的一些公式是一个重言
式,但是认为一个适合过去观察的公式会提供任何预测未来观察的根据却是
虚妄的。

人们习惯于对这个认为自然律存在的公设加上明言的或默认的附加条
件,即自然律必须是简单的。可是这一点意思既含混而又带有目的论的色彩。
“简单”所表示的意思是什么并不清楚,而且除非造物主对科学家大发仁慈,
否则并不存在任何先验的理由可以期待定律一定简单。通过归纳法论证因为
我们已经发现的定479
返回目录 上一页 下一页 回到顶部 0 0
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!