友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
第三电子书 返回本书目录 加入书签 我的书架 我的书签 TXT全本下载 『收藏到我的浏览器』

纯粹理性批判-第59部分

快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!

幻相与误谬推理密切联结,在共同原理下组织所成”之全部体系,故须有一特殊之消极的立法,根据理性本质及其纯粹使用之对象,在训练之名称下建立一种警戒及自己检讨之体系——在此种体系之前,无一伪辩的幻相能成立,且不问其因要求例外之特殊待遇所提呈之理由为何,立即显露其身身之虚伪者也。
  但极须注意者,在此先验的批判之第二主要部分,纯粹理性之训练,并非指向由于纯粹理性所得知识之内容,乃在其方法耳。盖前者已在先验原理论中论究之矣。顾“使用理性”之形相不问其所应用者为何种对象,实极相似,惟同时其先验的使用,与一切其他用法,则又如是根本不同,故若无特别为此种目的所筹划之意在训戒之消极的训练教示,则吾人不能期望避免由所用方法(此种方法在其他领域中实合于理性之用,唯在此先验的领域中则不然)不当,而必然发生之误谬。

  第一节 关于纯粹理性独断的使用之训练

  数学呈显“纯粹理性无经验之助独自扩大成功”之最光荣例证。例证乃有传染性者,尤其一种能力在一领域中已有成功,自必以为能在其他领域中,期望亦获同一之幸运。是以纯粹理性期望在先验的使用中扩大其领域,亦如在其数学的使用时,能同一成功,尤在其择用“在数学中显有功效之同一方法”时为然。故认知“到达必然的正确性所名为数学的之方法”,与“吾人由以努力欲在哲学中获得同一正确性及在哲学中应名为独断的之方法”是否同一,在吾人实极为重要者也。
  哲学的知识乃由理性自概念所得之知识;数学的知识乃由理性自构成概念所得之知识。所谓构成概念,乃指先天的展示“与概念相应之直观”而言。故构成一概念,吾人需要“非经验的直观”。此种直观以其为一直观故,必须为一“个别的对象”,但以其乃构成一概念(一普遍的表象),故在其表象中又必须表显适于“属此同一概念之一切可能的直观”之普遍的效力。例如我之构成一三角形,或唯由想像在纯粹直观中表现“与此种概念相应之对象”,或依据纯粹直观以经验的直观又表现之于纸上——在两种事例中,皆完全为先天的,未尝在任何经验中求取范例。吾人所描画之个别图形乃经验的,但亦用以表现概念而不损及概念之普遍性。盖在此种经验的直观中,吾人仅考虑“吾人所由以构成概念之活动”,而抽去许多规定(如边及角之大小等),此类规定,以其不能改变三角之概念,故极不相干者也。
  是以哲学的知识,唯在普遍中考虑特殊,而数学的知识则在特殊中甚或在个别事例中——虽常先天的及由于理性——考虑普遍。因之,正如此种个别的对象为一用以构成此对象之某种普遍的条件”所规定,其概念(与此概念相应之个别对象,仅为此概念之图型)之对象,亦必思维为普遍的所规定者。
  故两种“理性知识”间之本质的相异,实在此方式上之不同,而不在其质料或对象之不同。凡谓哲学仅以质为对象,数学仅以量为对象,以区别哲学与数学者,实误以结果为原因耳。数学知识之方式,乃其“专限于量”之原因。盖仅有量之概念容许构成,即容许先天的在直观中展示之;至“质”则不能在任何“非经验的直观”中表现之。因之,理性仅能由概念获得“质”之知识。除由经验以外,无一人能获得与实在之概念相应之直观;吾人绝不能先天的自吾人自身所有之源泉,及在“实在之经验的意识”之先,具有此种直观。圆锥物之形状,吾人固能无须任何经验之助、仅依据其概念自行在直观中构成之,但此圆锥物之色彩,则必先在某种经验中授与吾人。我除经验所提供之例证以外,不能在直观中表现普泛所谓原因之概念;关于其他概念,亦复如是。哲学与数学相同,实曾论究量之问题,如总体、无限等等。数学亦论究质之问题,如以线、面之不同视为不同性质之空间,及以延扩之连续性视为空间性质之一等等。但即哲学与数学,在此等事例中,有一共同对象,而理性所由以处理此种对象之形相,则在哲学中者与在数学中者全然相异。哲学限于普遍的概念;数学仅由概念则一无所成,故立即趋赴直观,数学在直观中具体的考虑其概念(虽非在经验的直观中而仅在先天的所呈现之直观中,即在其所构成之直观中考虑之),在此种直观中,凡自“用以构成此对象之普遍的条件”而来者,对于其所构成之“概念之对象”必普遍的有效。
  设令以一三角形概念授与哲学家,而任被以其自身之方法寻究三角形所有各角之和与直角之关系。则彼所得者,仅有“为三直线所包围而具有三种角之图形”之概念而已。不问彼默思此概念如何之久,决不能产生任何新事物。彼能分析直线、角及三之数字等等之概念,而使之明晰,但绝不能到达“不包含于此等概念中之任何性质”。今试令几何学家处理此等问题。彼立即开始构成一三角形。因彼知两直角之和正等于自直线上之一点所能构成之一切邻角之和,故被延长三角形之一边而得两邻角,此等邻角之和等于两直角。于是彼引一对边平行线以分割外角,而见彼已得与内角相等之外邻角——以及等等。以此种方法,经由直观所导引之推理连锁,彼乃到达关于此问题之圆满证明及普遍有效之解决。
  但数学不仅构成几何学中所有之量(quanta);且亦构成代数学中所有之量(quantitas)。在代数中,数学完全抽去“以此种量之概念所思维之对象性质”。斯时数学采用某种符号以代一切此种量(数)如加、减、开方等等之构成。数学一度在量之普遍的概念中区别量所有之种种不同关系以后,即依据某种普遍的规律,在直观中展示量所由以产生及变化之一切演算方法。例如一数量为其他数量所除时两种数量之符号,依除法之记号而联结之,在其他之数学进程中,亦复如是;故在代数中由符号的构成,正如在几何中由直证的构成(对象自身之几何的构成),吾人乃能到达“论证的知识由纯然概念所绝不能到达”之结果。
  哲学家与数学家二者皆实行理性之技术,其一由概念以行之:其一则由彼依据概念先天的所展示之直观行之,顾二者所有之成功乃有如是之根本的差异,其理由何在?就吾人以上阐明先验原理论时之所述各点观之,即能了然其原因所在。吾人在此处并不论究仅由分权概念所能产生之分析命题(论究此种命题,哲学家优于数学家),唯论究综合命题,且实论究所能先天认知之综合命题。盖我决不可专注意于“我在所有之三角形概念中实际所思维之事物”(此仅纯然定义而已);必须越出概念之外而到达“不包含于此概念中但又属于此概念”之性质。顾此事除我依据经验的直观或纯粹的直观之条件以规定我之对象以外,实不可能。依据经验的直观之条件以规定我之对象之方法,仅与吾人以经验的命题(依据各角之测量),此种经验的命题并无普遍性,更无必然性;因而绝不合于吾人之目的。其第二种方法,乃数学之方法,且在此种事例中则为几何学的构成之方法,我由此种方法联结——属于普泛所谓三角形之图型因而属于其概念之——杂多在一纯粹直观中(正如我在经验的直观中之所为者)。普遍的综合命题,必须由此种方法构成之。
  故欲使三角形哲学化,即论证的思维此三角形,在我殆为极无益之事。除“以之开始之纯然定义”以外,我不能更前进一步。世自有仅由概念所构成之先验的综合,此种综合惟哲学家始能处理之;但此种综合仅与普泛所谓之事物相关,乃规定“事物之知觉所以能属于可能的经验”之条件者。但在数学的问题中,并无此种问题,亦绝无关于“存在”之问题,仅有关于对象自身所有性质之问题,盖即谓仅在此等性质与对象之概念相联结之范围内成为问题耳。
  在以上之例证中,吾人之所努力者,仅在使“理性依据概念之论证的使用”与“理性由于构成概念之直观的使用”之间所存之极大差异,辨别明晰。顾此点自必引达以下之问题,即使理性之二重使用成为必然者,其原因为何,且吾人如何认知其所用者为第一种方法,抑第二种方法。
  吾人所有之一切知识最后皆与可能的直观有关,盖知识唯由直观始有对象授与。顾先天的概念(即非经验的概念)或其自身中已包括一纯粹直观(设为如是,则其概念能为吾人所构成)、或仅包括“非先天的所授与之可能的直观”之综合。在此后一事例中,吾人固能用此种概念以构成先天的综合判断,但仅依据概念之论证的,绝非由于构成概念之直观的也。
  先天的所授与之唯一直观,乃纯然现象方式之直观,即空间时间。所视为量之空间时间概念,能先天的在直观中展示之,即或自量之性质(形)方面构成之,或仅就其量中所有“数”构成之(同质的杂多之纯然综合)。但事物所由以在时间空间中授与吾人之“现象质料”,则仅能在知觉中表现,因而为后天的。先天的表现“此种现象之经验的内容”之唯一概念,乃普泛所谓事物之概念,此种普泛所谓事物之先天的综合知识,仅能以——知觉所能后天的授与吾人之事物之——综合之规律授与吾人而已。绝不能产生关于实在的对象之先天的直观,盖以此种直观必须为经验的也。
  关于普泛所谓事物(其直观不容先天的授与者)之综合命题,乃先验的。先验的命题,绝不能由构成概念以授与吾人,仅依据先天的概念以授与吾人。此等命题所包含者,仅为吾人依据之在经验上探求“所不能先天的以直观表现之事物(即知觉)所有某种综合的统一”之规律。但此等综合的原理,不能在一特殊事例中,先天的展示其所有概念任何之一;仅借经验(此经验自身仅依据此等综合的原理而始可能者)后天的展示之。
  吾人若就一概念,综合的判断之,则吾人必须越出此概念以外,而诉之于此概念所由以授与之直观。盖若吾人限于所包含于此概念中者而判断之,则此判断纯为分析的,就实际所包含于此概念中者,仅用为说明思维而已。但我能自概念转至与其相应之纯粹的或经验的直观,以便具体的在此种直观中考虑概念,因而先天的或后天的认知“此概念之对象”之性质为何。先天的方法由构成概念以合理的数学的知识授与吾人,后天的方法则仅以经验的(机械的)知识授与吾人,此种知识乃不能产生必然的自明的命题者。是以我即能分析我所有关于黄金之经验的概念,而所得者仅为列举我实际以此名词所思维之一切事物而已,此虽改进我之知识所有之逻辑的性格,但绝无所增益于其上者也。但我若探取“世所熟知以黄金所名之物体”,则由此物体获得种种知觉;此等知觉产生综合的、但属于经验的之种种命题。当其概念为数学的,例如在三角形之概念中之时,则我能构成此概念,即先天的在直观中以此概
  念授与吾人,且以此种方法而得综合的而又合理的之知识。但若所授与我者为实在性、实体、力等等之先验的概念,则其所指示者既非经验的直观,又非纯粹直观,仅为经验的直观之综合,此等直观以其为经验的之故,不能先天的授与吾人。又因此种综合不能超出概念先天的进至其所相应之直观,故其概念不能产生任何有所规定的综合命题,仅产生“可能之经验的直观之综合”所有之原理。故先验的命题,乃由理性依据纯然概念所得之综合的知识;且为论证的知识,盖此种知识虽为唯一所以使经验的知识之综合的统一可能者,但又不能先天的授与吾人直观者也。
  于是有理性之二重使用;此二种使用形相在其知识之有普遍性及先天的起源之点,彼此固相类似,但其结果则大异。其相异之理由,则以在现象领域中(在此范围内一切对象皆为授与吾人者)有二种要素,即直观之方式(空间时间),此为完全能先天的认知之规定之者,及质料(物质的要素)或内容,此指在空间时间中所见及之某某事物,因而含有与感觉相应之一种现实存在。关于此种“除经验的形相以外,绝不能以任何确定的形相授与”之质料的要素,吾人所能先天的具有之者,除“可能的感觉之综合”云云之一类不确定概念(就其在可能的经验中属于统觉之统一限度内而言)以外,实无其他任何事物。至关于方式的要素,则吾人能先天的在直观中规定吾人所有之概念,盖因吾人在空间时间中由同质之综合自行创造对象自身——此等对象乃仅被视为量者。前一方法名为依据概念之理性使用;用此方法时,吾人之所能为者不过按现象之现实内容归摄之于概念之下耳。至其概念,则除经验的即后天的(虽常依据此等概念,以之为经验的综合之规律)规定之以外,不能以此种方法使其内容确定之。另一方法,名为“由于构成概念之理性使用”;且因概念在此处与一先天的直观相关,故此等概念即以此故为先天的、而能无须经验的资料之助,以十分确定之形相在纯粹直观中授与吾人。关于存在空间或时间中之一切事物,凡就以下之问题所考虑者;(一)此种事物是否为量且其程度如何;(二)是否吾人以之为积极的存在者,抑以之为缺乏此种积极的存在;(三)在何种程度内,此种占有空间或时间之某某事物,为元始的基体,或仅实体所有之规定;(四)是否此种存在与其他存在有为因或为果之关系;(五)最后关于其存在是否孤立,抑或与其他存在有相互关系而彼此依存——此等问题亦以其为此种存在之可能性、现实性、必然性,或与此等等相反者之问题,一切皆属于理性自概念所得之知识,此种知识名为哲学的。但(一)空间中之先天的直观所有之规定(形状),(二)时间之区分(延续),(三)乃至“时间空间内同一事物之综合”中所有普遍的要素之知识,及由此所产生之一直观量(数)——凡此种种皆由于构成概念之理性工作名为数学的。
  理性在数学的使用中所到达之极大成效,自必发生此种期望,以为理性或至少理性之方法,在其他领域中,亦将与在量之领域中相同,有同一之成效。盖此种方法具有能使其一切概念在先天的所能提供之直观中实现之便益,由此即成为所谓“控制自然”矣;反之,纯粹哲学当其由先天的论证概念,以求洞察自然世界时,实陷于渺茫之中,盖以不能先天的直观此等概念之实在,因而证实之也。且在精通数学之士,一旦从事彼等之计划,对于此种进程,从未缺乏自信,即在庸众,对于数学家之熟练,亦抱有极大期望。盖因数学家关于其数学,从未企图使之哲学化(此诚一难事!),故理性之二种使用间所有之特殊异点,彼等绝不思及之。自常识假借而来之“通行之经验的规律”,数学家以之为公理。数学家之所从事者,虽正为空间时间之概念(以之为唯一之本源的最),但关于空间时间概念由来之问题,则绝不关心。复次,数学家以研究纯粹悟性概念之起源以及规定其效力所及范围之事,为多余之举;盖彼等仅留意于使用此等概念而已。凡此种种,数学家若不逾越其固有之限界(即自然世界之限界),则彼等完全正当。但若彼等于不知不识间越出感性领域而进入纯粹的乃至先验的概念之不安定根据,则此一地域(instabilistellus,innabilis
返回目录 上一页 下一页 回到顶部 0 1
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!