友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
价格理论-第16部分
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!
数量”,
则那些点就被认为是可达到的,在我们能够利用成本曲线画出一条如此定义的供给曲线之前,必须弄清楚另外一点:为了了解供方是否愿意按所说的价格供给所说的数量,奇Qīsuu。сom书我们假设他具有哪些其他的选择?有两种主要的可能性:(1)我们可以设想他只有选择停业——我们可以认为他面临着一个全部或全无的命题。(2)我们可以设想他选择供应所说的数量或任何更少的数量。
在第一种情形中——即全部或全无的情形——平均可变成本曲线显然是可达到和不可达到的点之间的分界线。厂商将宁愿要平均可变成本曲线以上的点,而不会选择不生产,相比之下,厂商宁愿什么也不生产,也不愿接受平均可变成本曲线以下的一点。
第二种情形——其中的其他可供选择的情况包括小于所说数量的供应——是两种情形中更有用处的一种,而且是一般画供给曲线时想得到的状况。在这种情形中,可达到的点与不可达到的点之间的分界线稍为有点复杂。对任何产量来说,最小供给价格或者是平均可变成本曲线的纵坐标,或者是边际成本曲线的纵坐标,即是较高的那个;供给曲线因此就是那些最小供给价格的轨迹。这个解释已在图5.20中针对D’的情形给出。实线是供给曲线;阴影区域(加上纵轴)是可达到的点。最小可变成本右边的点以及边际成本与平均可变成本曲线之间的点,根据全部或全无的原则是可达到的,这些点现在已被排除了,因为通过稍为减少产量可以避免的成本,现在在由那个产量获得的收益水平之上,少生产些才是厂商的利益所在。总之,人们可以把边际成本曲线和平均可变成本曲线想象为两者都表示不宜于不同产量变化类型的边际成本——边际成本曲线对应于产量的微小增加或减少,平均可变成本曲线对应于停产。如果两种类型的变化对厂商都是可能的,则具有较大边际成本的那条线显然应是起主导作用的一条,因此,两条曲线中较高的那条是适用的。在前一节的A、B和C三例中,平均可变成本曲线无论哪里都没有处在边际成本曲线以上。所以可以说供给曲线与边际成本曲线是一致的,而且也与各种价格下最优产量的轨迹是一致的;但是很明显,这种一致性一般来说是无效的。
供给曲线中由边际成本曲线给出的部分,对于大部分目的是适用的,因为厂商宁要这条曲线上的点,而不要可达到的、具有同样价格但产量较低的点。但事情可能并不总是如此。例如,假设不存在外部经济或不经济(这样我们就能够假设厂商的供给曲线独立于产业的产量),并假设存在大量具有图5.20中那样的供给曲线的潜在厂商,再假设政府规定了最低价格,其水平在平均可变成本曲线的最低点之上,并把相同的产量定额分配给任何要求配额厂商,而且总是使总配额数等于按该规定价格需要的数量。在这种情况下,均衡位置将在供给曲线的平均可变成本部分,因为除非该配额已减少到那个数量,否则厂商就会进入该产业。这个理想化的模型也适用于许多私人卡特尔协议。
不同“时期”的供给曲线之间的关系
到目前为止,我们一直在讨论一个单个的“时期”,也就是生产要素供给曲线的一个单个的集合。然而,很清楚,不同时期的供给曲线必然是相互关联的。省略某些在前一节引入的复杂情形,特别是那些由下降的平均可变成本引起的情形,将简化我们对这种联系的描述。因此,我们将回到早先考虑过的比较简单的例子,在该例中我们省略了不连续性,这样,厂商任何“时期”的供给曲线都可以看作是相应“时期”的边际成本曲线。
单个厂商
我们首先来考虑对任何单个厂商都是最长时期的情形。在这种情形中,如果我们仅限于考虑在图5.15(a)和(b)中所描绘的要素供给曲线的某些极端形式,则所有租用要素的供给曲线就都是水平线,或者如果我们考虑一般的情形,则上述供给曲线就是具有正斜率的,但在任何地方都不与数量轴成直角。
但是,厂商的企业家能力的情况又怎样呢?这个概念需要回顾一下,它是通过“厂商的生产函数”给出定义的,所以如果最长的时期将涉及企业家能力的不同供给条件,这就意味着厂商的生产函数在最长的时期里必然与其他时期不同。特别是,对单个厂商的企业家能力的具有无限弹性供给的最合理解释,似乎是说生产函数关于所有租用要素都是一次齐次的,这样,所有生产函数都乘以一个常数,将等于用同一个常数乘以产量。但那样在供给方面就不存在什么东西对厂商的规模规定一个限度;或者是产生垄断,或者在厂商中对产量的划分是任意而多变的,或者厂商的含义将消失。对最长时期的这种解释使我们的理论在说明我们感兴趣的中心问题之一时毫无用处:即厂商数量和规模的决定,所以,它似乎是于我们的目的不相适宜的解释。
相反,我们要假设所有时期的生产函数都是一样的。这就是说,我们把企业家能力解释为反映了函数的特性,无论根据新情况进行的调整如何完全,企业家能力也是需要的,而且,无论对租用要素的重新组织如何完整,租用的要素也是这种能力的一个不完全的替代物。
对这个最长的时期来说,生产任何数量(譬如Xo)的要素最优组合将通过解方程(1)来获得,这里把方程(1)重写一下:
MPPa/MFCa=MPPb/MFCb=MPPc/MFCc=1/MC
Xo=fi(a,b…)
边际要素成本将根据要素的长期供给曲线计算。如果这些供给曲线是水平的,则边际要素成本就等于要素的价格,否则,边际要素成本就是所用要素数量的函数。假定要素的最优组合由(ao,bo,Co…)给出。这意思是说,使用要素的这个最优组合,将有一个产量Xo被生产出来,方程(1)中的比例将都是相等的。这些比例的公值就是对生产要素每增加一个美元开支所增加的单位产量数目。就是说,它是长期边际成本的倒数。假定我们现在考虑任何一个短时期,其定义是对某些要素的数量固定在对这个特定的长时期适当的数值上,比如说,我们将a固定在ao上,这就是说,使A的供给曲线在a=ao点上垂直,但是让所有其他的要素成为可变的。这样我们实质上就能够去掉方程(1)中的第一个比率,会生产函数中的a=ao,并解出所有其他要素的值。很明显,其解为(bo,Co…),即与前面相同。我们的长期解告诉我们,那些值,包括a=ao,将得出一个产量Xo,并使方程(1)中的所有比率都相互相等。
这样,与任何长期相对应,总存在一个完整系列的短期,其边际成本等于长期边际成本。确实,对要素的最优长期组合来说,这是一个明显的条件:只有当任何一种可以设想的增加一单位产量的方法所增加的成本,和其他可以设想的方法一样多而不会超过时,给定产量的成本才能达到最低,而且特别要指出,使某些要素在数量上保持不变,而改变其他要素的数量,这也是一个可以设想的、增加一单位产量的方法。因此,长期边际成本曲线上的每一点,都将通过一系列短期边际成本曲线,我们可以说这些短期边际成本曲线与Xo相对应。
现在要考虑,我们从产量Xo过渡到一个较大的产量,譬如xo十△X时,究竟会怎么样,对应于这个新的产量,将存在一个新的最优长期组合,比如说(ao十△ao,bo十△bo,co+△co,…),以及一个新的长期边际成本,比如说LRMC。成本的增加量就是△X和LRMC的乘积。根据定义,这个增加的成本,不可能比任何其他增加△X产量的方法所增加的成本更大,否则新的组合就不是最优的。特别是,成本的增加不会比这样增加△X产量的方法所增加的成本更大,即不改变一个或更多的生产要素数量的方法。由此可知,如果产量大于Xo,则长期边际成本必然小于或等于任何对应于产量Xo的边际成本曲线上的短期边际成本。相反,如果产量减少了,则减少产量的长期技术必然要从成本方面减去,其减少量至少应同这样做的短期技术一样多,这说明如果产量低于Xo,长期边际成本必然大于或等于任何与产量Xo相对应的边际成本曲线上的短期边际成本。
同样的论点也适用于任何一对不同的时期,其不同在于,“短”期将所有在“长”期内保持不变的要素也都保持不变,而其他要素则不包括在内。例如,如果我们对“时期”设想一个特殊的顺序,这就是说,最长时期的下一个保持a=ao,再下一个,a=ao,b=bo,等等,而最短的时期则维持所有要素不变,当我们从较长时期推移到较短时期时,与Xo相对应的一组边际成本曲线就会逐步变得更接近垂直。
图5.21刻划了这种情形,它表现了两组边际成本曲线,一组与Xo相对应,另一组与X1相对应,标在短期边际成本曲线上的数字0、1、2、3,分别代表越来越长的时期,0是短期中最短的,当允许厂商进行调整的范围越来越大时,边际成本曲线就变得越来越平直。当然,存在着大量可能的“时期”顺序,人们的确能够设想出无数个时期,所以人们将获得一条连续的曲线,它完全充塞了标号o的曲线和长期边际成本曲线之间的空间。特定的问题则既要求确定时期的顺序,也要求确定时期的数目,这一点值得明确地给予考虑。
产业
如果不存在外部经济或不经济,则任何时期的产业供给曲线都将不过是相应时期的边际成本曲线的总和,没有任何东西需要进一步加以说明。在产业长期供给曲线的每一点,都有一束短期供给曲线穿过,它们随着时期长度的增加而变得越来越平直了。
引入外部经济或不经济,导致产业供给曲线与边际成本曲线总和之间的偏离。由此所引起的与当前问题有关联的唯一的复杂性是,这种偏离的程度对不同的时期可能是不同的。外部影响可能与特殊的要素有关系。对于这些要素维持不变的时期来说,可能就不存在外部影响;对更长的时期来说就可能存在外部影响。然而,这不会改变我们的结论,即时期越长,供给曲线越平直。
企业家能力的报酬,租金和准租金
竞争的均衡
各种生产要素的报酬显然取决于该产业的需求条件及供给条件。这些条件决定了被利用的各种租用要素的实际数量,并且进而通过要素的供给曲线,决定了这些要素的每单位价格,它们决定产业的厂商数目和厂商的产量,并因此决定了预期收入和预期契约成本之间的差额。这些租用要素并没有引起什么特殊的困难,但在某种范围内更详细地讨论对我们称为企业家能力的东西所付的报酬可能是值得的。
图5.22说明了与一个单个均衡位置相对应的若干可能性。最后一部分描述了一个具有正斜率供给曲线的产业的状况;其他部分描绘了四个不同厂商的情况。厂商名称后面的字母指上面描述过的例子。当产量接近零时,厂商1和2的总可变成本也趋向于零,这一点为下列事实所说明,即:当产量为零时,边际成本和平均可变成本是一样的。厂商1将始终具有不变的边际成本,直到有限的企业家能力——或者另一个固定要素——引起成本上升为止。如图所示,价格恰好等于最小平均可变成本,所以预期收入与预期可变成本就完全相等,没有给企业家能力留下任何报酬,而且收入也无法支付固定成本。如果需求下降,而且没有降低(通过外部影响)厂商1的成本条件,该厂商就会停止经营。厂商2的边际成本,起初下降,然后上升,这反映了某些技术上的不可分割性在起作用。阴影区域代表可用来作为企业家能力报酬的并支付固定成本的数量。如果这样,阴影区域也可以由边际成本曲线和水平价格线之间的区域给出,因为边际成本曲线以下的区域等于总可变成本。厂商3像厂商2一样,只是总可变成本不会随着产量接近于零而接近于零这一点不同,所以阴影区域是作为可以得到的企业家能力的报酬,并可用来支付固定成本,它小于边际成本曲线和价格线之间的区域。厂商4像厂商3一样,但是其可变成本是如此之高,以致于没有任何东西留作企业家能力的报酬以及用来支付固定成本。
图5.22中例示的情形完全可以作为一种没有固定成本的长期均衡状况。只要不存在受到激励,并准备争得企业家能力报酬的潜在厂商,这就是说,只要没有任何厂商现在虽未生产这种产品,但其具有OP以下的最小平均可变成本,则阴影区域所显示的、厂商2和3得到了企业家能力报酬这一事实,就不会威胁均衡的稳定性。
对于长期均衡状况而言,阴影区域可以描述为厂商2和3所拥有的“稀缺的”企业家能力的“租金”。在估价厂商2和3的所有者的“财富”或资本价值时,这个“租金”也将资本化,因为它是一种持久的报酬。通常,这个租金被包括在“总成本”之中,而假设的、其他产量的平均成本,则根据其他产量的“租金”将是相同的这一假定来计算,由此产生一个平均总单位成本曲线,就像图5.23中为厂商3所画的那样。但是应该强调,这条曲线与其他曲线相比,具有完全不同的含义和作用:它是最终均衡的结果或后果,而不是它的一个决定因素,除了与q3相对应的点以外,这条曲线上的任何一点都没有重要性,不管是否存在外部经济或不经济。例如,假定不存在外部经济或不经济,并且假定产业的需求曲线上升了。厂商的边际和平均成本曲线不会受影响,并且仍将决定厂商的产量。但是阴影部分就会因此而扩大,ATUC曲线就必须重画了。这就是到目前为止并未使用该曲线的原因;它更是使人误解而于事无补。
如果图5.22中描绘的情形不是一种长期均衡状况而是一种特殊的短期状况,则阴影区域将不仅包括企业家能力的报酬,而且包括超过可变成本中对其他固定要素的支付而给予它们的报酬。如果需求保持不变,则向更长时期的过渡将意味着在成本曲线和产业供给曲线方面有所变化,而这就意味着阴影区域范围将扩大或缩小。如果这样,阴影区域可以看作包括了对固定要素的“准租金”:说“租金”是因为像企业家能力的租金一样,对所讨论的特定时期来说,它们是被决定的价格,而不是决定的价格,说“准”是因为和企业家能力的报酬不同,它们只是暂时被决定的价格。
只有当所有的厂商都处于图5.22的厂商1或厂商4的状祝时,对所有厂商来说,在长期中的企业家能力的报酬才会为零。出现这个结果的条件是,存在一个足够大数量的厂商,它们都具有相同的最小平均可变成本,不需要再添加其他条件,只要最小平均可变成本是相同的,成本曲线的形状就可以在任何其他方面发生变化。另外,如果产业所有租用要素的供给曲线都是水平线,而且不存在技术上的外部或内部经济,则产业供给曲线将是水平线,这可以看作是产业没有使用特殊要素的情形。然而要注意,单个厂商的边际成本曲线不一定是水平线,所以厂商的数量和规模仍然是确定的。
垄断
如果厂商被看作一个垄断者,那就是说
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!