友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!
冰人幽灵-第114部分
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部! 如果本书没有阅读完,想下次继续接着阅读,可使用上方 "收藏到我的浏览器" 功能 和 "加入书签" 功能!
北极探险的时候,一个专门设计的大飞艇降落在冰面上,就可以成为探险队的理想的大本营。
一个大飞艇可以吊运几十吨以至几百吨的东西,这在工业建设上也可以起到特殊的作用。石油钻井的塔架,飞艇可以平稳地提起来,运到新的钻井地点。要穿过高山峡谷架设高压输电线,飞艇既可以在山头上吊装架线的铁塔,又可以飞越峡谷铺设高压电线。飞艇是空中的起重工。
正由于有这许多优越的性能,目前许多国家都在设计充氦气的新型飞艇。法国设计的“大力神号”飞艇,直径有235米,体积有150万立方米,能装载900吨货物。预料在不久的将来,飞艇又将重返天空。
液态氦
在本世纪初的几十年里,世界各国都在寻找氦气资源,在当时主要是为了充飞艇。但是到了今天,氦不仅用在飞行上,尖端科学研究,现代化工业技术,都离不开氦,而且用的常常是液态的氦,而不是气态的氦。液态氦把人们引到一个新的领域——低温世界。
前面已经讲过拉姆赛在空气中找氦气的故事。在液态空气的温度下,氦和氖仍然是气体;在液态氢的温度下,氖变成了固体,可是氦仍然是气体。
要冷到什么程度,氦才会变成液体呢?
前面已说过,英国物理学家杜瓦在1898年首先得到了液态氢。就在同一年,荷兰的物理学家卡美林&;#183;奥涅斯也得到了液态氢。液态氢的沸点是零下253摄氏度,在这样低的温度下,其他各种气体不仅变成液体,而且都变成了固体。只有氦是最后一个不肯变成液体的气体。卡美林&;#183;奥涅斯决心把氦气也变成液体。
1908年7月,卡美林&;#183;奥涅斯成功了,氦气变成了液体。他第一次得到了320立方厘米的液态氦。
要得到液态氢,必须先把氢气压缩并且冷却到液态空气的温度,然后让它膨胀,使温度进一步下降,氢气就变成了液体。
要得到液态氦,必须先把氦气压缩并且冷却到液态氢的温度,然后让它膨胀,使温度进一步下降,氦气才能变成液体。
液态氦是透明的容易流动的液体,就像打开了瓶塞的汽水一样,不断飞溅着小气泡。
液态氦是一种与众不同的液体,它在零下269摄氏度就沸腾了。在这样低的温度下,氢也变成了固体,千万不要使液态氦和空气接触,因为空气会立刻在液态氦的表面上冻结成一层坚硬的盖子。
多少年来,全世界只有荷兰卡美林&;#183;奥涅斯的实验室能制造液态氦。直到1934年,在英国卢瑟福那里学习的前苏联科学家卡比查发明了新型的液氦机,每小时可以制造4升液态氦。以后,液态氦才在各国的实验室中得到广泛的研究和应用。
在今天,液态氦在现代技术上得到了重要的应用。例如要接收宇宙飞船发来的传真照片或接收卫星转播的电视信号,就必须用液态氦。接收天线末端的参量放大器要保持在液氦的低温下,否则就不能收到图像。
然而,液态氦的奇妙之处还不在于低温。
漏液氦的杯子
卡美林&;#183;奥涅斯是第一个得到液氦的科学家。他并不****,还想使温度进一步降低,以得到固态氦。他没有成功(固态氦是1926年基索姆用降低温度和增大压力的方法首先得到的),却得到了一个没有预料到的结果。
对于一般液体来说,随着温度降低,密度会逐渐增加。卡美林&;#183;奥涅斯使液态氦的温度下降,果然,液氦的密度增大了。但是,当温度下降到零下271摄氏度的时候,怪事出现了,液态氦突然停止起泡,变成像水晶一样的透明,一动也不动,好像一潭死水,而密度突然又减小了。
这是另一种液态氦。卡美林&;#183;奥涅斯把前一种冒泡的液态氦叫做氦Ⅰ,而把后一种静止的液态氦做氦Ⅱ。
把一个小玻璃杯按在氦Ⅱ中。玻璃杯本是空的,但是过了一会,杯底出现了液态氦,慢慢地涨到跟杯子外面的液态氦一样平为止。
把这个盛着液态氦的小玻璃杯提出来,挂在半空。看,玻璃杯底下出现了液氦,一滴,两滴,三滴……不一会,杯中的液态氦就“漏”光了。是玻璃杯漏了吗?不,玻璃杯一点也不漏。这是怎么回事呢?
原来氦Ⅱ是能够倒流的,它会沿着玻璃杯的壁爬进去又爬出来。这是在我们日常生活中没有碰到过的现象,只有在低温世界才会发生。这种现象叫做“超流动性”,具有“超流动性”的氦Ⅱ叫做超流体。
后来,许多科学家研究了这种怪现象,又有了许多新的发现。其中最有趣的是1938年阿兰等人发现的氦刀喷泉。
在一根玻璃管里,装着很细的金刚砂,上端接出来一根细的喷嘴。将这玻璃管浸到氦Ⅱ中,用光照玻璃管粗的下部,细喷嘴就会喷出氦Ⅱ的喷泉,光越强喷得越高,可以高达数厘米。
氦Ⅱ喷泉也是超流体的特殊性质。在这个实验中,光能直接变成了机械能。
魔术世界
大家还记得拉姆赛把各种物质放到液态空气中的各种奇妙的实验吧!各种物质放在液态氦里,情况就更奇妙了。
看!在液氦的温度下,一个铅环,环上有一个铅球。铅球好像失去了重量,会飘浮在环上,与环保持一定距离。
再看!在液氦的温度下,一个金属盘子,把细链子系着磁铁,慢慢放到盘子里去。当磁铁快要碰到盘子的时候,链子松了,磁铁浮在盘子上,怎样也不肯落下去。
真像是到了魔术世界!这一切,只能在液态氦的温度下发生。温度一升高,魔术就不灵了,铅球落在铅环上,磁铁也落在金属盘子里了。
这是低温下的超导现象。
原来,有些金属,在液态氦的温度下,电阻会消失;在金属环和金属盘中,电流会不停地流动而产生磁场。这时候,磁场的斥力托住了铅球和磁铁,使它们浮在半空中。
在低温下,出现了许多奇妙的物理现象。许多重要的物理实验,都要在低温下进行。
目前,世界各国的物理学家还在研究液态氦,希望通过液态氦达到更低的温度,研究各种物质在低温下会发生什么奇妙的变化,会有什么我们目前还不知道的性质。这就产生了物理学的一个新的分支——低温物理学。
结束语
氦,这个奇妙的物质,一直在引起科学家们的注意。科学家们继续研究氦,通过科学实验,不断地为氦写下一页又一页新的历史。
物理学家不仅仅得到了液态氦,还得到了固态氦,他们正在向绝对零度进军(物理学把零下273。16摄氏度叫做绝对零度。这个温度标叫做绝对温标,用K表示。OK就是…273。16℃,而273。16K就是0℃)。从理论上讲,绝对零度是达不到的,但是可以不断接近它。液态氢的沸点是绝对温标20。2度,液态氦的沸点是绝对温标4。2度。在绝对温标2。19度的时候,氦Ⅰ变为氦Ⅱ。1935年,利用“绝热去磁”法,使液态氦冷到绝对温标0。0034度;1957年,达到绝对温标0。00002度;目前已达到跟绝对零度只相差0。000001度了。
天文学家也继续研究着太阳元素。太阳上的氢“燃烧”变成了氦,以后的命运又如何呢?他们发现宇宙间有一些比太阳更炽热的恒星,中心温度达到几亿度。在这些恒星的核心,氢原子核已经都变成了氦原子核,氦原子核又相互碰撞,正在生成着碳原子核和氧原子核,同时放出大量的能。这类恒星橡心脏一样,一会儿膨胀,一会儿收缩,很有规律。为什么会这样?这也是因为氦在起作用。
天文学家还研究了银河系内氢的含量和氦的含量的比值。根据这个比值,有人估算了银河系的年龄有一二百亿年。
氦的历史并没有完,人类认识氦的历史也没有完,而我们这本讲氦的故事的小册子,却不得不结束了。
要问在发现氦和研究氦的历史上谁的功劳最大呢?是天文学家詹森和罗克耶吗?是化学家拉姆赛和物理学家克鲁克斯吗?是发明分光镜的本生与基尔霍夫吗?当然还要考虑把空气、氢气以及氦气液化的汉普松、卡美林&;#183;奥涅斯等人的功劳。
很难说。在人类认识氦的历史上,他们都有着自己的贡献。氦仅仅是一种元素,但是发现它和认识它,是许多门科学——物理学、天文学、化学、地质学等的共同胜利,决不是某一个人的力量能够完成的。
科学是没有平坦的道路可走的,只有不畏艰险不怕困难的人才能攀登科学的高峰。通过氦的发现的历史,我们看到许多科学家们正是这样勇于实践的人。他们有严谨的科学态度,对于实验中的一点细微现象——一个小气泡,第三位小数的细微差异,也不放过。他们不但爱问为什么,而且千方百计地去寻找答案。他们埋头苦干,几个月、一年、几年坚持不懈,终于由纷乱的谜团中找出头绪,得到了解答。他们永远不****已有的成绩,而是深人一步、再深入一步地钻研。人们对氦的认识就是这样逐步深人的。到现在为止,谁也不敢这样说:“氦,我们已经完全认识清楚了。”
外篇 深深的粒子海洋
由夸克组成的强子家族,只是基本粒子世界的一员,在那个极微世界里,新发现的粒子似乎层出不穷,永远都没有结束的时候。目前已知的基本粒子已达到数百种,足可以组成一个庞大的“粒子动物园”。这样众多粒子的存在向我们提出了一些问题:究竟为什么它们要存在?它们在粒子的各种相互作用中起什么作用?它们彼此之间是如何联系的?它们是否是由某些更基本的粒子组成的?
轻子家族
今天公认的基本粒子可分为三大类:轻子类、夸克类(即强子类)和媒介粒子类。其中夸克类粒子全部由夸克组合而成,前文已详细介绍,不再赘述,在此重点介绍轻子类和媒介粒子类。
轻子是类点的、无结构的粒子。轻子具有如下两个性质:轻子只参与弱相互作用和电磁相互作用,不受强力影响,其中中微子只参与弱相互作用;轻子必定以“粒子—反粒子”对的形式产生或湮灭,总的轻子数(轻子的数目减去反轻子的数目)在我们所知道的一切过程中保持不变。
我们最熟悉的轻子就是电子,它是一个极轻的粒子(约是一个核子质量的1/1800),带1个单位负电荷。已知的轻子有六种,其中三种带电的轻子是电子、μ 子和τ子,μ子是于1937年被安德森发现的,其质量为电子质量的207倍,它不稳定,在2毫秒内衰变为电子;τ子是于1975年被发现的,其质量约为电子质量的3500倍,差不多是核子质量的两倍,但更不稳定,其寿命只有千分之几毫秒。这种“重电子”和“超重电子”的真实存在,对物理学家来说还是一个谜。
除了三种带电轻子外,还有三种不带电的轻子,称为中微子。每一种中微子对应着一种带电轻子,分别被称为电子中微子、μ子中微子、τ子中微子。它们总是成对出现,每一对称为一代,而且每一代中的中微子质量都比相应的荷电轻子的质量小得多。
从电性上来说,中微子都是中性的,因此,它们不参与电磁相互作用。一般假定它们的静质量为零,因此按照相对论,它们必定是以光速运动;不过,它们的质量问题是当前争论的一个焦点,人们认为,如果电子中微子确实是有质量的话,实际上也是微乎其微的。然而,可能存在的这么一点质量,在宇宙学上有重大意义:因为在宇宙中有如此多的中微子,它们是大爆炸遗留下来的,它们加在一起的质量可以产生的引力效应,大到足以使宇宙目前向外的膨胀减慢,甚至停止下来。
由此可见,中微子和反中微子在我们的宇宙中扮演了一个极为重要的角色。不过遗憾得很,对它们的探测极其困难,因为它们是电中性的,还具有惊人的穿透物质的能力,在固体物质中通过极大的距离仍未被吸收掉。然而,利用巨型探测器以及极大的耐心,观测到少量的中微子和反中微子还是可能的。
媒介粒子和四种力
假如组成宇宙万物的基本粒子相互间没有任何关系,它们中的任何一个都是像被“隔离”的,那么,在这样一个宇宙中,既无恒星也无行星和生命,宇宙只是一个寂寞的、完全没有事件发生的集合。幸运的是,宇宙间物质和粒子都有不同的相互作****,这才使我们的宇宙形成了有机联系,充满活力而生机勃勃。
在日常生活中,虽然自然界看上去好像有多种作****,但事实上所有这些作****都可以简化到最基本的四种:引力、电磁力、强力和弱力。这四种力也就是物质间的四种相互作用,这些相互作用都是靠媒介粒子的传递来实现的,媒介粒子是传递物质间相互作用的粒子。
引力是我们最熟悉的力,任何物体之间都有引力的相互作用,物体的质量越大,引力越大,而在粒子世界里,它几乎不起作用;引力还是一种长程力,其作用范围可以延伸到无穷远,当然随着距离的增加,其作****也逐渐减弱。科学家预测传播两个物体之间引力的媒介粒子是无质量的引力子,但引力子直到今天还没有被直接观测到。
电磁力是由粒子的电荷产生的。一个粒子可以带正电荷,也可以带负电荷,电荷同性相斥,异性相吸,如果一个粒子不带电荷,则不受电磁力影响。作用于固体原子和分子之间的电磁力使固体具有硬度,电磁力也具有磁性和发光的特性。携带电磁力的媒介粒子是光子,它也是产生光线的粒子。
强力是原子核内的力,它把原子内的中子和带正电荷的质子结合在一起(质子因都带正电荷经常试图互相推开,如果没有强力,它们将相互飞开),强力的作用范围只能在原子核内,大约只有10-15米,在相同的距离内,强力要比电磁力强100倍。传递质子、中子之间强力的粒子就是介子,从这个意义上来说,介子也是媒介粒子;传递夸克之间强力的粒子叫做胶子。
弱力作用于所有的夸克和粒子,强度是电磁力的千分之一。弱力与其它三种力不同的是,它的作用是改变粒子而不对粒子产生推和拉的效应。比如放射性原子很不稳定,因为它的原子核容纳了太多的中子,因此必定会发生衰变,衰变发生时,一个中子变成一个质子,同时释放出电子。这就是弱力在起作用。弱力是由W+、W-和Z粒子传递的。
玻色子和费米子
基本粒子还可以根据自旋的不同分为玻色子和费米子两大类。自旋是粒子的一个最重要性质,但粒子的自旋与我们常见的旋转很不一样,它是一份一份跳跃着自旋的,只能取一个常数的倍数。自旋为半奇数倍的是玻色子,光子、引力子、胶子等媒介粒子都属于玻色子;自旋为整数倍的是费米子,夸克和轻子家族成员都属于费米子。简言之,费米子是组成物质的粒子,玻色子则是传播物质相互作用的粒子。
这两类粒子
快捷操作: 按键盘上方向键 ← 或 → 可快速上下翻页 按键盘上的 Enter 键可回到本书目录页 按键盘上方向键 ↑ 可回到本页顶部!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!