ÓÑÇéÌáʾ£ºÈç¹û±¾ÍøÒ³´ò¿ªÌ«Âý»òÏÔʾ²»ÍêÕû£¬Çë³¢ÊÔÊó±êÓÒ¼ü¡°Ë¢Ð¡±±¾ÍøÒ³£¡
VB2008´ÓÈëÃŵ½¾«Í¨(PDF¸ñʽӢÎÄ°æ)-µÚ46²¿·Ö
¿ì½Ý²Ù×÷: °´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ °´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ °´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿! Èç¹û±¾ÊéûÓÐÔĶÁÍ꣬ÏëÏ´μÌÐø½Ó×ÅÔĶÁ£¬¿ÉʹÓÃÉÏ·½ "Êղص½ÎÒµÄä¯ÀÀÆ÷" ¹¦ÄÜ ºÍ "¼ÓÈëÊéÇ©" ¹¦ÄÜ£¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡When¡¡you¡¡use¡¡interfaces¡¡and¡¡types¡¡that¡¡implement¡¡interfaces£»¡¡you¡¡are¡¡writing¡¡ponent
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡oriented¡¡software¡£¡¡ponents¡¡and¡¡inheritance¡¡are¡¡two¡¡different¡¡object¡oriented¡¡techniques¡£¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡You¡¡use¡¡inheritance¡¡to¡¡implement¡¡interfaces£»¡¡but¡¡ponents¡¡serve¡¡the¡¡purpose¡¡of¡¡making¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ideas¡¡happen¡£¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Understanding¡¡How¡¡Inheritance¡¡and¡¡ponents¡¡Work¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Inheritance¡¡is¡¡the¡¡act¡¡of¡¡defining¡¡base¡¡classes¡¡with¡¡functionality¡¡that¡¡may¡¡or¡¡may¡¡not¡¡be¡¡over
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ridden¡¡or¡¡overloaded£»¡¡as¡¡explained¡¡in¡¡the¡¡previous¡¡chapter¡£¡¡ponents¡¡define¡¡subsystems¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡that¡¡are¡¡put¡¡together¡¡like¡¡pieces¡¡of¡¡a¡¡puzzle¡£¡¡The¡¡idea¡¡behind¡¡ponents¡¡is¡¡to¡¡be¡¡able¡¡to¡¡asso
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ciate¡¡two¡¡interface¡¡instances¡¡and¡¡make¡¡them¡¡work¡¡with¡¡each¡¡other¡¡without¡¡knowing¡¡what¡¡the¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡other¡¡does¡£¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡To¡¡get¡¡a¡¡feeling¡¡of¡¡the¡¡difference¡¡between¡¡inheritance¡¡using¡¡classes¡¡and¡¡ponents¡¡that¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡use¡¡interfaces¡¡and¡¡classes£»¡¡we¡¡will¡¡look¡¡at¡¡a¡¡classic¡¡example¡¡of¡¡inheritance¡¡and¡¡how¡¡that¡¡example¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡translates¡¡to¡¡ponents¡£¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Illustrating¡¡Inheritance¡¡Using¡¡a¡¡Shape£»¡¡Rectangle£»¡¡and¡¡Square¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡One¡¡of¡¡the¡¡most¡¡popular¡¡examples¡¡of¡¡using¡¡inheritance¡¡involves¡¡shapes¡¡and¡¡how¡¡to¡¡calculate¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡the¡¡area¡¡of¡¡a¡¡shape¡£¡¡The¡¡starting¡¡point¡¡of¡¡this¡¡inheritance¡¡is¡¡a¡¡MustInherit¡¡base¡¡class¡¡that¡¡has¡¡a¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡single¡¡property¡¡and¡¡method¡¡to¡¡indicate¡¡a¡¡single¡¡dimension¡¡and¡¡its¡¡associated¡¡area¡£¡¡For¡¡example£»¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡the¡¡following¡¡would¡¡be¡¡an¡¡appropriate¡¡base¡¡class¡¡definition¡£¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡MustInherit¡¡Class¡¡Shape¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Public¡¡MustOverride¡¡Function¡¡CalculateArea£¨£©¡¡As¡¡Double¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡End¡¡Class¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡The¡¡method¡¡CalculateArea£¨£©¡¡is¡¡used¡¡to¡¡calculate¡¡the¡¡area¡¡of¡¡the¡¡shape¡£¡¡It¡¡is¡¡declared¡¡as¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡MustOverride¡¡and¡¡must¡¡be¡¡implemented¡¡by¡¡a¡¡derived¡¡class¡£¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Page¡¡191¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡CH¡¡AP¡¡T¡¡E¡¡R¡¡¡¡¡¡7¡¡¡¡¡¡¡ö¡¡¡¡¡¡¡¡L¡¡E¡¡AR¡¡N¡¡IN¡¡G¡¡¡¡¡¡AB¡¡O¡¡U¡¡T¡¡¡¡¡¡CO¡¡M¡¡P¡¡O¡¡N¡¡E¡¡N¡¡TS¡¡¡¡¡¡AN¡¡D¡¡¡¡¡¡C¡¡L¡¡AS¡¡S¡¡¡¡H¡¡I¡¡E¡¡R¡¡AR¡¡C¡¡HI¡¡E¡¡S¡¡169¡¡
¡¡¡¡¡¡¡¡¡¡For¡¡starters£»¡¡let¡¯s¡¡define¡¡Square£»¡¡which¡¡represents¡¡the¡¡square¡¡shape¡£¡¡
Class¡¡Square¡¡¡¡
¡¡¡¡¡¡¡¡Inherits¡¡Shape¡¡
¡¡¡¡¡¡¡¡Private¡¡_width¡¡As¡¡Double¡¡
¡¡¡¡¡¡¡¡Public¡¡Property¡¡Width£¨£©¡¡As¡¡Double¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Get¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Return¡¡_width¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡End¡¡Get¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Set£¨ByVal¡¡value¡¡As¡¡Double£©¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡_width¡¡=¡¡value¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡End¡¡Set¡¡
¡¡¡¡¡¡¡¡End¡¡Property¡¡
¡¡¡¡¡¡¡¡Public¡¡Overrides¡¡Function¡¡CalculateArea£¨£©¡¡As¡¡Double¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Return¡¡Width¡¡*¡¡Width¡¡
¡¡¡¡¡¡¡¡End¡¡Function¡¡
End¡¡Class¡¡
¡¡¡¡¡¡¡¡¡¡A¡¡square¡¡has¡¡only¡¡one¡¡dimension£»¡¡Width£»¡¡which¡¡represents¡¡the¡¡width¡¡of¡¡a¡¡particular¡¡shape¡£¡¡In¡¡¡¡
the¡¡case¡¡of¡¡a¡¡square£»¡¡width¡¡means¡¡one¡¡of¡¡the¡¡four¡¡sides¡£¡¡We¡¯ve¡¡implemented¡¡the¡¡CalculateArea£¨£©¡¡¡¡
method£»¡¡which¡¡calculates¡¡the¡¡surface¡¡area¡¡of¡¡the¡¡square¡¡by¡¡multiplying¡¡the¡¡Width¡¡property¡¡¡¡
by¡¡itself¡£¡¡
¡¡¡¡¡¡¡¡¡¡A¡¡rectangle¡¡is¡¡a¡¡form¡¡of¡¡square£»¡¡and¡¡therefore¡¡¡¡Rectangle¡¡derives¡¡from¡¡¡¡Square£º¡¡
Class¡¡Rectangle¡¡¡¡
¡¡¡¡¡¡¡¡Inherits¡¡Square¡¡
¡¡¡¡¡¡¡¡Private¡¡_length¡¡As¡¡Double¡¡
¡¡¡¡¡¡¡¡Public¡¡Property¡¡Length£¨£©¡¡As¡¡Double¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Get¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Return¡¡_length¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡End¡¡Get¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Set£¨ByVal¡¡value¡¡As¡¡Double£©¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡_length¡¡=¡¡value¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡End¡¡Set¡¡
¡¡¡¡¡¡¡¡End¡¡Property¡¡
¡¡¡¡¡¡¡¡Public¡¡Overloads¡¡Function¡¡CalculateArea£¨£©¡¡As¡¡Double¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Return¡¡Width¡¡*¡¡Length¡¡
¡¡¡¡¡¡¡¡End¡¡Function¡¡
End¡¡Class¡¡
¡¡¡¡¡¡¡¡¡¡Rectangle¡¡cannot¡¡be¡¡described¡¡using¡¡a¡¡single¡¡dimension£»¡¡thus¡¡we¡¡need¡¡to¡¡add¡¡the¡¡property¡¡¡¡
Length¡£¡¡In¡¡the¡¡implementation¡¡of¡¡the¡¡Rectangle¡£CalculateArea£¨£©¡¡method¡¡to¡¡calculate¡¡the¡¡area£»¡¡¡¡
the¡¡length¡¡is¡¡multiplied¡¡by¡¡the¡¡width¡£¡¡
¡¡¡¡¡¡¡¡¡¡Take¡¡a¡¡good¡¡look¡¡at¡¡how¡¡CalculateArea£¨£©¡¡is¡¡declared¡£¡¡In¡¡the¡¡case¡¡of¡¡Rectangle¡£¡¡
CalculateArea£¨£©£»¡¡the¡¡Overloads¡¡keyword¡¡is¡¡used£»¡¡not¡¡Overrides¡£¡¡This¡¡is¡¡because¡¡you¡¡want¡¡to¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Page¡¡192¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡
170¡¡¡¡¡¡¡¡¡¡¡¡¡¡CH¡¡AP¡¡T¡¡E¡¡R¡¡¡¡¡¡7¡¡¡¡¡¡¡ö¡¡¡¡¡¡¡¡L¡¡E¡¡A¡¡R¡¡N¡¡IN¡¡G¡¡¡¡¡¡AB¡¡OU¡¡T¡¡¡¡¡¡CO¡¡M¡¡P¡¡O¡¡N¡¡E¡¡N¡¡TS¡¡¡¡¡¡AN¡¡D¡¡¡¡C¡¡L¡¡AS¡¡S¡¡¡¡H¡¡I¡¡E¡¡R¡¡AR¡¡C¡¡H¡¡IE¡¡S¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡enforce¡¡calculation¡¡consistency¡£¡¡Calculation¡¡consistency¡¡is¡¡when¡¡you¡¡perform¡¡a¡¡specific¡¡calcula
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡tion¡¡on¡¡a¡¡type¡¡and¡¡get¡¡the¡¡answer¡¡expected¡¡of¡¡that¡¡type£»¡¡and¡¡not¡¡some¡¡other¡¡type¡£¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡So£»¡¡say¡¡you¡¡instantiate¡¡Rectangle£»¡¡and¡¡then¡¡cast¡¡it¡¡to¡¡Square¡£¡¡When¡¡you¡¡call¡¡CalculateArea£¨£©£»¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡you¡¡want¡¡it¡¡to¡¡calculate¡¡as¡¡if¡¡the¡¡rectangle¡¡were¡¡a¡¡square£»¡¡not¡¡a¡¡rectangle¡£¡¡Thus£»¡¡by¡¡adding¡¡the¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Overloads¡¡keyword¡¡in¡¡the¡¡¡¡Rectangle¡£CalculateArea£¨£©¡¡method£»¡¡a¡¡square¡¡is¡¡calculated¡¡as¡¡a¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡square£»¡¡and¡¡a¡¡rectangle¡¡is¡¡calculated¡¡as¡¡a¡¡rectangle¡£¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡But¡¡there¡¡is¡¡a¡¡consequence¡£¡¡Let¡¯s¡¡say¡¡Rectangle¡¡is¡¡cast¡¡to¡¡Shape¡£¡¡As¡¡the¡¡inheritance¡¡is¡¡declared¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡when¡¡calling¡¡CalculateArea£¨£©£»¡¡the¡¡area¡¡of¡¡a¡¡square¡¡is¡¡calculated£»¡¡which¡¡is¡¡not¡¡correct¡£¡¡Thus¡¡it¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡would¡¡seem¡¡that¡¡using¡¡New¡¡is¡¡incorrect£»¡¡and¡¡Overrides¡¡should¡¡be¡¡used¡¡instead¡£¡¡So¡¡using¡¡Overrides¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡solves¡¡the¡¡Shape¡£CalculateArea£¨£©¡¡problem£»¡¡but¡¡when¡¡a¡¡rectangle¡¡is¡¡converted¡¡into¡¡a¡¡square£»¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡the¡¡area¡¡represents¡¡a¡¡rectangle¡¡and¡¡not¡¡square¡£¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡To¡¡illustrate¡¡the¡¡differences£»¡¡assuming¡¡the¡¡use¡¡of¡¡Overloads£»¡¡look¡¡at¡¡the¡¡following¡¡source¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡code£»¡¡which¡¡calculates¡¡the¡¡area¡¡of¡¡a¡¡Rectangle¡£¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Dim¡¡cls¡¡As¡¡Rectangle¡¡=¡¡New¡¡Rectangle£¨£©¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡cls¡£Width¡¡=¡¡20¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡cls¡£Length¡¡=¡¡30¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Dim¡¡area¡¡As¡¡Double¡¡=¡¡cls¡£CalculateArea£¨£©¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡In¡¡the¡¡example£»¡¡Rectangle¡¡is¡¡instantiated£»¡¡and¡¡the¡¡properties¡¡Width¡¡and¡¡¡¡Length¡¡are¡¡assigned¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡values¡¡of¡¡20¡¡and¡¡30£»¡¡respectively¡£¡¡When¡¡the¡¡CalculateArea£¨£©¡¡method¡¡is¡¡called£»¡¡the¡¡found¡¡area¡¡is¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡assigned¡¡to¡¡the¡¡variable¡¡area¡£¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡The¡¡source¡¡code¡¡does¡¡what¡¡we¡¡expect¡£¡¡It¡¡instantiates¡¡a¡¡rectangle£»¡¡assigns¡¡the¡¡rectangle¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡dimensions£»¡¡and¡¡calculates¡¡the¡¡area¡¡of¡¡the¡¡rectangle¡£¡¡But¡¡a¡¡Rectangle¡¡object¡¡can¡¡also¡¡be¡¡assigned¡¡to¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡a¡¡square¡¡variable¡£¡¡Consider¡¡the¡¡following¡¡modified¡¡source¡¡code£º¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Dim¡¡rectangle¡¡As¡¡Rectangle¡¡=¡¡New¡¡Rectangle£¨£©¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡rectangle¡£Width¡¡=¡¡20¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡rectangle¡£Length¡¡=¡¡30¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Dim¡¡square¡¡As¡¡Square¡¡=¡¡rectangle¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Dim¡¡area¡¡As¡¡Double¡¡=¡¡square¡£CalculateArea£¨£©¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Console¡£WriteLine£¨¡¨Square¡¡Area¡¡is¡¡¡¨¡¡&¡¡square¡£CalculateArea£¨£©¡¡&¡¡_¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¨¡¡Rectangle¡¡Area¡¡is¡¡¡¨¡¡&¡¡rectangle¡£CalculateArea£¨£©£©¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡In¡¡the¡¡example£»¡¡the¡¡variable¡¡rectangle¡¡is¡¡of¡¡type¡¡Rectangle¡£¡¡The¡¡dimensions¡¡of¡¡the¡¡rectangle¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡are¡¡assigned£»¡¡and¡¡then¡¡the¡¡rectangle¡¡is¡¡converted¡¡into¡¡a¡¡square¡¡and¡¡assigned¡¡to¡¡the¡¡variable¡¡square¡£¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Using¡¡the¡¡keyword¡¡Overloads£»¡¡the¡¡area¡¡is¡¡400£»¡¡which¡¡is¡¡correct¡¡because¡¡when¡¡we¡¡ask¡¡for¡¡the¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡dimensions¡¡of¡¡the¡¡square£»¡¡we¡¡get¡¡a¡¡width¡¡of¡¡20¡£¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡The¡¡various¡¡techniques¡¡used¡¡in¡¡this¡¡example¡¡are¡¡explained¡¡in¡¡the¡¡remainder¡¡of¡¡this¡¡chapter¡£¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡öNote¡¡¡¡The¡¡example¡¡illustrates¡¡that¡¡by¡¡using¡¡inheritance£»¡¡you¡¡can¡¡cast¡¡a¡¡type¡¡and¡¡get¡¡the¡¡appropriate¡¡behavior¡£¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡But¡¡this¡¡works¡¡only¡¡if¡¡you¡¡design¡¡your¡¡inheritance¡¡hierarchy¡¡properly¡£¡¡You¡¡need¡¡to¡¡understand¡¡that¡¡behavior¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡depends¡¡on¡¡the¡¡type¡¡that¡¡you¡¡have¡¡from¡¡the¡¡inheritance¡¡tree¡£¡¡And¡¡if¡¡you¡¡are¡¡not¡¡careful£»¡¡you¡¡can¡¡get¡¡some¡¡very¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡odd¡¡side¡¡effects¡£¡¡Visual¡¡Basic¡¡allows¡¡you¡¡to¡¡explicitly¡¡define¡¡what¡¡each¡¡method¡¡does£»¡¡and¡¡you¡¡should¡¡think¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡very¡¡hard¡¡about¡¡what¡¡each¡¡method¡¡should¡¡do¡£¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Page¡¡193¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡CH¡¡AP¡¡T¡¡E¡¡R¡¡¡¡¡¡7¡¡¡¡¡¡¡ö¡¡¡¡¡¡¡¡L¡¡E¡¡AR¡¡N¡¡IN¡¡G¡¡¡¡¡¡AB¡¡O¡¡U¡¡T¡¡¡¡¡¡CO¡¡M¡¡P¡¡O¡¡N¡¡E¡¡N¡¡TS¡¡¡¡¡¡AN¡¡D¡¡¡¡¡¡C¡¡L¡¡AS¡¡S¡¡¡¡H¡¡I¡¡E¡¡R¡¡AR¡¡C¡¡HI¡¡E¡¡S¡¡171¡¡
Illustrating¡¡ponents¡¡Using¡¡a¡¡Shape£»¡¡Rectangle£»¡¡and¡¡Square¡¡
Another¡¡way¡¡to¡¡implement¡¡a¡¡shape¡¡is¡¡to¡¡use¡¡ponents¡£¡¡Using¡¡ponents¡¡means¡¡to¡¡define¡¡¡¡
an¡¡idea£»¡¡and¡¡then¡¡define¡¡an¡¡implementation¡¡of¡¡the¡¡idea¡£¡¡Designing¡¡and¡¡implementing¡¡po
nents¡¡is¡¡not¡¡similar¡¡to¡¡designing¡¡and¡¡implementing¡¡inheritance¡¡trees¡£¡¡With¡¡inheritance£»¡¡you¡¡¡¡
need¡¡to¡¡consider¡¡type¡¡casting£»¡¡base¡¡class¡¡functionality£»¡¡and¡¡how¡¡to¡¡override¡¡or¡¡overload¡¡methods¡¡or¡¡¡¡
properties¡£¡¡£¨¡¡Type¡¡casting¡¡is¡¡when¡¡you¡¡cast¡¡to¡¡a¡¡specific¡¡type¡¡with¡¡or¡¡without¡¡an¡¡explicit¡¡cast¡¡¡¡
operator¡££©¡¡With¡¡ponents£»¡¡you¡¡need¡¡to¡¡think¡¡in¡¡terms¡¡of¡¡ideas¡¡and¡¡how¡¡they¡¡would¡¡be¡¡imple
mented¡¡as¡¡interfaces¡£¡¡
¡¡¡¡¡¡¡¡¡¡Having¡¡looked¡¡at¡¡the¡¡Shape£»¡¡Rectangle£»¡¡and¡¡Square¡¡implementation£»¡¡you¡¡might¡¡define¡¡an¡¡¡¡
interface¡¡£¨named¡¡IShape£©¡¡as¡¡follows£º¡¡
Interface¡¡IShape¡¡¡¡
¡¡¡¡¡¡¡¡Function¡¡CalculateArea£¨£©¡¡As¡¡Double¡¡
¡¡¡¡¡¡¡¡Property¡¡Width£¨£©¡¡As¡¡Double¡¡
End¡¡Interface¡¡
¡¡¡¡¡¡¡¡¡¡For¡¡the¡¡IShape¡¡declaration£»¡¡you¡¡might¡¡even¡¡add¡¡a¡¡¡¡Length¡¡property£»¡¡but¡¡the¡¡overall¡¡idea¡¡of¡¡¡¡
the¡¡IShape¡¡interface¡¡is¡¡wrong¡£¡¡When¡¡you¡¡think¡¡of¡¡a¡¡shape£»¡¡do¡¡you¡¡think¡¡in¡¡terms¡¡of¡¡length¡¡and¡¡¡¡
width£¿¡¡Probably¡¡not¡£¡¡Rather£»¡¡you¡¡think¡¡in¡¡terms¡¡of¡¡area£»¡¡perimeter£»¡¡and¡¡other¡¡features¡¡that¡¡are¡¡¡¡
mon¡¡to¡¡all¡¡shapes¡£¡¡Length¡¡and¡¡width¡¡are¡¡not¡¡mon¡¡to¡¡all¡¡shapes¡£¡¡A¡¡circle¡¡has¡¡a¡¡radius¡¡or¡¡¡¡
diameter£»¡¡a¡¡triangle¡¡has¡¡base¡¡width£»¡¡height£»¡¡and¡¡triangle¡¡peak¡¡offset¡£¡¡The¡¡point¡¡is¡¡that¡¡the¡¡idea¡¡¡¡
of¡¡a¡¡shape¡¡is¡¡not¡¡the¡¡idea¡¡of¡¡a¡¡rectangle¡¡or¡¡a¡¡square¡£¡¡
¡¡¡¡¡¡¡¡¡¡The¡¡correct¡¡way¡¡to¡¡define¡¡the¡¡ideas¡¡as¡¡interfaces¡¡would¡¡be¡¡as¡¡follows£º¡¡
Interface¡¡IShape¡¡¡¡
¡¡¡¡¡¡¡¡Function¡¡CalculateArea£¨£©¡¡As¡¡Double¡¡
End¡¡Interface¡¡
Interface¡¡ISquare¡¡¡¡
¡¡¡¡¡¡¡¡Inherits¡¡IShape¡¡
¡¡¡¡¡¡¡¡Property¡¡Width£¨£©¡¡As¡¡Double¡¡
End¡¡Interface¡¡
Interface¡¡IRectangle¡¡¡¡
¡¡¡¡¡¡¡¡Inherits¡¡IShape¡¡
¡¡¡¡¡¡¡¡Property¡¡Width£¨£©¡¡As¡¡Double¡¡
¡¡¡¡¡¡¡¡Property¡¡Length£¨£©¡¡As¡¡Double¡¡
End¡¡Interface¡¡
¡¡¡¡¡¡¡¡¡¡This¡¡code¡¡contains¡¡three¡¡interfaces£º¡¡IShape£»¡¡which¡¡defines¡¡a¡¡shape£»¡¡IRectangle£»¡¡which¡¡¡¡
describes¡¡a¡¡rectangle£»¡¡and¡¡ISquare£»¡¡which¡¡describes¡¡a¡¡square¡£¡¡The¡¡IRectangle¡¡and¡¡ISquare¡¡¡¡
interfaces¡¡subclass¡¡the¡¡IShape¡¡interface£»¡¡indicating¡¡that¡¡an¡¡IRectangle¡¡is¡¡also¡¡an¡¡¡¡IShape¡£¡¡The¡¡¡¡
ISquare¡¡interface¡¡is¡¡separate¡¡from¡¡the¡¡¡¡IRectangle¡¡interface£»¡¡because¡¡the¡¡idea¡¡of¡¡a¡¡square¡¡£¨four¡¡¡¡
equal¡¡sides£©¡¡is¡¡not¡¡the¡¡same¡¡as¡¡the¡¡idea¡¡of¡¡a¡¡rectangle¡¡£¨only¡¡the¡¡parallel¡¡sides¡¡of¡¡the¡¡four¡¡sides¡¡¡¡
must¡¡be¡¡equal£©£»¡¡even¡¡though¡¡the¡¡shapes¡¡might¡¡appear¡¡similar¡¡£¨in¡¡real¡¡life£»¡¡a¡¡square¡¡is¡¡a¡¡rectangle£»¡¡¡¡
but¡¡a¡¡rectangle¡¡is¡¡not¡¡necessarily¡¡a¡¡square£©¡£¡¡¡¡
¡¡¡¡¡¡¡¡¡¡This¡¡separation¡¡of¡¡the¡¡square¡¡and¡¡rectangle¡¡interface¡¡illustrates¡¡that¡¡when¡¡designing¡¡inter
faces£»¡¡you¡¡need¡¡to¡¡focus¡¡on¡¡the¡¡specific¡¡behavior¡¡of¡¡the¡¡interface¡£¡¡You¡¡don¡¯t¡¡want¡¡to¡¡focus¡¡on¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Page¡¡194¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡
172¡¡¡¡¡¡¡¡¡¡¡¡¡¡CH¡¡AP¡¡T¡¡E¡¡R¡¡¡¡¡¡7¡¡¡¡¡¡¡ö¡¡¡¡¡¡¡¡L¡¡E¡¡A¡¡R¡¡N¡¡IN¡¡G¡¡¡¡¡¡AB¡¡OU¡¡T¡¡¡¡¡¡CO¡¡M¡¡P¡¡O¡¡N¡¡E¡¡N¡¡TS¡¡¡¡¡¡AN¡¡D¡¡¡¡C¡¡L¡¡AS¡¡S¡¡¡¡H¡¡I¡¡E¡¡R¡¡AR¡¡C¡¡H¡¡IE¡¡S¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡the¡¡general¡¡behavior¡£¡¡The¡¡general¡¡behavior¡¡is¡¡managed¡¡when¡¡you¡¡design¡¡the¡¡classes¡£¡¡The¡¡modeling¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡your¡¡real¡life¡¡experiences¡¡is¡¡defined¡¡in¡¡the¡¡implementations£»¡¡as¡¡illustrated¡¡by¡¡the¡¡following¡¡¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡example¡£¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Class¡¡SquareImpl¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Implements¡¡ISquare£»¡¡IRectangle¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡End¡¡Class¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Class¡¡RectangleImpl¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Implements¡¡IRectangle¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡End¡¡Class¡¡
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡The¡¡SquareImpl¡¡class¡¡implements¡¡the¡¡behavior¡¡of¡¡ISquare¡¡and¡¡IRectangle£»¡¡and¡¡models¡¡re
¿ì½Ý²Ù×÷: °´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ °´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ °´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿!
ÎÂÜ°Ìáʾ£º ο´Ð¡ËµµÄͬʱ·¢±íÆÀÂÛ£¬Ëµ³ö×Ô¼ºµÄ¿´·¨ºÍÆäËüС»ï°éÃÇ·ÖÏíÒ²²»´íŶ£¡·¢±íÊéÆÀ»¹¿ÉÒÔ»ñµÃ»ý·ÖºÍ¾Ñé½±Àø£¬ÈÏÕæдԴ´ÊéÆÀ ±»²ÉÄÉΪ¾«ÆÀ¿ÉÒÔ»ñµÃ´óÁ¿½ð±Ò¡¢»ý·ÖºÍ¾Ñé½±ÀøŶ£¡